Activity-Dependent Regulation of Conductances in Model Neurons

Abstract
Neurons maintain their electrical activity patterns despite channel turnover, cell growth, and variable extracellular conditions. A model is presented in which maximal conductances of ionic currents depend on the intracellular concentration of calcium ions and so, indirectly, on activity. Model neurons with activity-dependent maximal conductances modify their conductances to maintain a given behavior when perturbed. Moreover, neurons that are described by identical sets of equations can develop different properties in response to different patterns of presynaptic activity.