Electrochromic mechanism in a-WO3−y thin films

Abstract
The electrochromic mechanism in amorphous tungsten oxide films is studied using Raman scattering measurements. The Raman spectra of as-deposited films show two strong peaks at 770 and 950 cm−1 due to vibrations of the W6+–O and W6+=O bonds, respectively, and a weaker peak at 220 cm−1 that we attribute to the W4+–O bonds. When lithium or hydrogen ions and electrons are inserted, extra Raman peaks due to W5+–O and W5+=O bonds appear at 330 and 450 cm−1, respectively. Comparison of the Raman spectra of sputtered isotopic a-W16O3−y and a-W18O3−y films confirms these assignments. We conclude that the as-deposited films contain mainly the W4+ and W6+ states, and the W5+ states are generated as a result of reduction of the W6+ states when lithium or hydrogen ions and electrons are inserted. We propose that the optical absorption in the colored films is caused by transitions between the W6+ and W5+, and W5+ and W4+ states.