Initial agonist burst duration depends on movement amplitude

Abstract
The initial burst of EMG activity associated with arm movements made by normal human subjects was studied. Subjects made visually guided, steptracking movements of different amplitudes and speeds. The duration of the initial agonist burst was greater for large than for small amplitude movements. The burst duration was not continuously graded but was either short (70 ms) for small amplitude movements (less than 20 deg) or long (140 ms) for large amplitude ones (greater than 50 deg). Movements of intermediate amplitudes (30–40 deg) were made with both short and long duration bursts. The increase in the duration of the initial agonist burst for large movements was produced by the appearance of a second component in the burst. Both components were of the same duration and occurred before movement peak velocity was reached. Intramuscular recording showed that both components originate from the same muscle. Similar observations were made in both fast and slow movements and in both the biceps and triceps muscles when they were being used as agonists. The data show that the central nervous system has two mechanisms for generation of large amplitude movements: modulation of the magnitude of the initial agonist burst and generation of a second component or pulse of agonist activity at the start of movement.