Abstract
The two mutually related bands B′2Δ–C2Π (7,0) → N2Δ–C2Π (0,0) and N2Δ–C2Π (0,0) → B′2Δ–C2Π (7,0) are observed with high resolution between 6620 and 6520 Å in the emission spectrum of the NO molecule. They are the 2Δ–2Π part of the 4d–3p transitions between the two Rydberg states N2Δ(4dδ) and C2Π (3pπ) of the molecule. A rotational analysis is carried out for both bands, and the very close similarity of the structure of these bands with the structure of the corresponding 2Δ–2Π bands of the 3d–3p transitions, observed in the infrared, is demonstrated. The two upper levels in these nd–3p transitions represent examples of mixed states showing complete changeover with increasing rotation from the Rydberg type with no spin–orbit coupling (AR = 0.00 ± 0.05 cm−1) to an inverted valence type and vice versa. The behavior of the doublet splitting is studied with regard to this changeover. The lower levels of the Rydberg state C2Π also are mixtures with levels of a valence state. The mixing with B2Π (ν = 7) is comparatively small in the C2Π (ν = 0) level, but it strongly affects the energy levels with the lowest J values. The beginning of one of the two bands observed in the visible, therefore, forms the (7,7) band of the system B′2ΔB2Π. Constants of the states involved are determined.