Abstract
Isolated competent amphibian ectoderm differentiates into neural (archencephalic) structures when treated with the plant lectin concanavalin A (Con A). While the inner ectoderm layer ofXenopus laevis forms brain structures after incubation with Con A, the outer ectoderm layer differentiates into ciliated epidermis only. This difference can be correlated with the pattern of Con A bound to the plasma membrane. With gold-labelled Con A it could be shown by transmission electron microscopy (TEM) that the outer ectoderm binds substantially less lectin than the inner layer. Furthermore we observed characteristic differences at the apical and basal surfaces of the cells of the same layer, i.e. on the apical cell surface of the superficial layer almost no Con A-gold could be found. In contrast, we observed a lot of gold particles on the basal cell side of the superficial layer. However, the number on both surfaces (apical and basal side of the cell) of the inner ectoderm layer was essentially higher, which could explain its biological reaction to the Con A stimulus and the differentiation into neural structures. The data presented in this paper indicate that early and late gastrula ectoderm bind similar amounts of Con A and support the view that the decrease in competence is not correlated with a loss of receptors for inducing factors. Furthermore, we describe the binding and the internalization of Con A via receptor-mediated endocytosis and the further fate of the Con A-gold-receptor complex inside the target cell.

This publication has 32 references indexed in Scilit: