Abstract
Atmospheric cold fronts observed in the boundary layer represent relatively sharp transition zones between air masses of disparate physical characteristics. Further, wavelike features and/or eddy structures are often observed in conjunction with the passage of a frontal zone. The relative merits of using both global and local (with respect to the span of a basis element) transforms to depict cold-frontal features are explored. The data represent both tower and aircraft observations of cold fronts. An antisymmetric wavelet basis set is shown to resolve the characteristics of the transition zone, and associated wave and/or eddy activity, with a relatively small number of members of the basis set. In contrast, the Fourier transformation assigns a significant amplitude to a large number of members of the basis set to resolve a frontal-type feature. In principle, empirical orthogonal functions provide an optimal decomposition of the variance. The observed transition zone, however, has to be phase alig... Abstract Atmospheric cold fronts observed in the boundary layer represent relatively sharp transition zones between air masses of disparate physical characteristics. Further, wavelike features and/or eddy structures are often observed in conjunction with the passage of a frontal zone. The relative merits of using both global and local (with respect to the span of a basis element) transforms to depict cold-frontal features are explored. The data represent both tower and aircraft observations of cold fronts. An antisymmetric wavelet basis set is shown to resolve the characteristics of the transition zone, and associated wave and/or eddy activity, with a relatively small number of members of the basis set. In contrast, the Fourier transformation assigns a significant amplitude to a large number of members of the basis set to resolve a frontal-type feature. In principle, empirical orthogonal functions provide an optimal decomposition of the variance. The observed transition zone, however, has to be phase alig...