Abstract
High–resolution transmission electron microscopy shows that metal nanoparticles sinter within a fraction of a second under an electron beam at ‘room temperature’ as long as classical models of thermal equilibrium apply. Images exhibit crystal planes that change in orientation with time as if the particle was undergoing melting and resolidification processes. We explore whether these dynamical effects are the result of heating or transformation effects in the electron microscope or quantum fluctuations in small systems.