Purification of catalytically produced multi-wall nanotubes

Abstract
Carbon nanotubes were produced in large amounts by catalytic decomposition of acetylene over a Co incorporated zeolite NaY support. Purification of multi-wall nanotubes was required in order to eliminate catalyst and amorphous carbon produced by thermal decomposition of hydrocarbon. First, separation of nanotubes and catalyst particles was carried out by hydrofluoric acid treatment. Then, two ways of removing amorphous carbon were studied: permanganate oxidation and air oxidation. The quality of nanotubes was characterized by means of transmission electron microscopy and the yield of pure nanotubes was quantitatively determined. Changes caused by treatment of the nanotubes were investigated by high resolution electron microscopy and a comparison was made between the nanotubes produced by this method and those synthesized by an arc discharge process after oxidation treatment.