Abstract
The mechanism by which platelets endocytose or release particulate or soluble substances is poorly understood. Engulfed materials enter the open canalicular system (OCS) by a process akin to phagocytosis, but fusion of platelet granules with the OCS is rarely observed. Secretion of granule contents, a concomitant of the "release reaction" which occurs during platelet aggregation, does not take place by extrusion at the surface membrane as is true for other secretory cells. Some substances may be secreted without obvious granule loss. To examine whether structural properties of the platelet membrane could account for this unusual behavior, thin section and freeze-fracture analyses were performed on platelets which had undergone endocytosis under a variety of experimental conditions. After freeze-cleavage, most of the intramembranous particles (IMP) remain associated with the outer leaflet of the platelet plasma membrane. The sites where the OCS reaches the surface membrane are marked by pits on the cytoplasmic leaflet (P face) and by complementary protrusions on the outer leaflet (E face) of the membrane. Endocytosis of small particles and solutes takes place via these structures. This process is not energy dependent but arrested at 4 degrees C. Distension of the OCS does not appear to affect the size or number of the pits. On the other hand, large particles are taken up by membrane invagination without redistribution of IMP's and independent of the pits. This process is sensitive to metabolic inhibition. Thus, the studies have demonstrated the existence of two different pathways for platelet endocytosis which are postulated to be also involved in secretion. The selective release of substances contained in different granules may be related to the "inside-out" structure of the plasma and OCS membranes.