Stromal-Derived Factor-1 (CXCL12) Regulates Laminar Position of Cajal-Retzius Cells in Normal and Dysplastic Brains
Open Access
- 13 September 2006
- journal article
- Published by Society for Neuroscience in Journal of Neuroscience
- Vol. 26 (37), 9404-9412
- https://doi.org/10.1523/jneurosci.2575-06.2006
Abstract
Normal brain development requires a series of highly complex and interrelated steps. This process presents many opportunities for errors to occur, which could result in developmental defects in the brain, clinically referred to as malformations of cortical development. The marginal zone and Cajal-Retzius cells are key players in cortical development and are established early, yet there is little understanding of the factors resulting in the disruption of the marginal zone in many types of cortical malformation syndromes. We showed previously that treatment with methylazoxymethanol in rats causes marginal zone dysplasia with displacement of Cajal-Retzius cells to deeper cortical layers. Here we establish that loss of activity of the chemokine stromal-derived factor-1 (SDF1) (CXCL12), which is expressed by the leptomeninges, is necessary and sufficient to cause marginal zone disorganization in this widely used teratogenic animal model. We also found that mice with mutations in the main receptor for SDF1 (CXCR4) have Cajal-Retzius cells displaced to deeper cortical layers. Furthermore, by inhibiting SDF1 signaling in utero by intraventricular injection of a receptor antagonist, we establish that SDF1 signaling is required for the maintenance of Cajal-Retzius cell position in the marginal zone during normal cortical development. Our data imply that cortical layering is not a static process, but rather requires input from locally produced molecular cues for maintenance, and that complex syndromes of cortical malformation as a result of environmental insults may still be amenable to explanation by interruption of specific molecular signaling pathways.Keywords
This publication has 47 references indexed in Scilit:
- Massive loss of Cajal-Retzius cells does not disrupt neocortical layer orderDevelopment, 2006
- Embryonic and early postnatal abnormalities contributing to the development of hippocampal malformations in a rodent model of dysplasiaJournal of Comparative Neurology, 2006
- Foxg1Confines Cajal-Retzius Neuronogenesis and Hippocampal Morphogenesis to the Dorsomedial PalliumJournal of Neuroscience, 2005
- Developmental Roles of p73 in Cajal-Retzius Cells and Cortical PatterningJournal of Neuroscience, 2004
- Role of the chemokine SDF-1 as the meningeal attractant for embryonic cerebellar neuronsNature Neuroscience, 2002
- Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar developmentNature, 1998
- Neuronal Heterotopias in the Developing Cerebral Cortex Produced by Neurotrophin-4Neuron, 1997
- Degeneration of Cajal-Retzius cells in the developing cerebral cortex of the mouse after ablation of meningeal cells by 6-hydroxydopamineDevelopmental Brain Research, 1997
- Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1Nature, 1996
- Immunological characterization of a basement membrane-specific chondroitin sulfate proteoglycan.The Journal of cell biology, 1989