Abstract
Sterilized seawater was used to assess the effects of temperature and salinity on the survival of Vibrio vulnificus. In the temperature range of 13 to 22 degrees C, numbers of V. vulnificus increased during the 6-day incubation. Temperatures outside this range reduced the time of V. vulnificus survival in sterile 10-ppt seawater. At these restrictive temperatures, V. vulnificus numbers were reduced by 90% after 6 days of incubation. Incubation between 0.5 and 10.5 degrees C demonstrated that V. vulnificus survives poorly below 8.5 degrees C. At salinities between 5 and 25 ppt and at 14 degrees C, V. vulnificus numbers actually increased or remained unchanged after 6 days of incubation. At salinities of 30, 35, and 38 ppt, numbers of V. vulnificus decreased 58, 88, and 83%, respectively. V. vulnificus could not be recovered from deionized water, indicating lysis. When a rifampin-resistant strain of V. vulnificus was used to inoculate sterilized and unsterilized seawater (20 ppt, 20 degrees C), numbers increased in sterile seawater but decreased to undetectable levels in 14 days in the unsterilized seawater, indicating that biological factors may play a role in the survival of V. vulnificus in the environment. Since our studies demonstrated sensitivity to low temperatures, the survival of V. vulnificus in naturally contaminated oysters at temperatures of 0, 2, and 4 degrees C was also determined. Numbers of endogenous V. vulnificus in oyster shellstock increased by more than 100-fold in shellstock stored at 30 degrees C but were reduced approximately 10- and 100-fold after 14 days at 2 to 4 degrees C and 0 degrees C, respectively. We conclude that both biological and physicochemical factors are important to the survival of V. vulnificus in the environment and that temperature is critical to controlling its growth in oyster shellstock.