Symmetry-breaking bifurcations in resonant surface waves

Abstract
Surface waves in a nearly square container subjected to vertical oscillations are studied. The theoretical results are based on the analysis of a derived set of normal form equations, which represent perturbations of systems with 1:1 internal resonance and with D4 symmetry. Bifurcation analysis of these equations shows that the system is capable of periodic and quasi-periodic standing as well as travelling waves. The analysis also identifies parameter values at which chaotic behaviour is to be expected. The theoretical results are verified with the aid of some experiments.

This publication has 1 reference indexed in Scilit: