Abstract
The effect of guanosine 5′-[beta−thio]diphosphate (GDP[beta S]), reported to be an antagonist of GTP at the G-protein-binding site, on human platelet activation was examined. GDP[beta S] (0.3-3 mM) had significant inhibitory effects on platelet aggregation and 5-hydroxytryptamine (5HT) secretion induced by thrombin, collagen, the thromboxane mimetic U46619 and 1,2-dioctanoylglycerol (diC8) in intact platelets, as well as in saponin-permeabilized platelets. Similar inhibitory effects in intact platelets were also observed with ATP (over similar concentration ranges) and GDP and GTP (at 2- and 10-fold higher concentrations respectively). All four nucleotides also inhibited ADP-induced platelet aggregation in indomethacin-treated platelets under conditions where no 5HT secretion occurred. Inhibition of thrombin-induced aggregation and secretion by GDP[beta S] and ATP in intact platelets was accompanied by a reduction in the thrombin-induced rise in intracellular Ca2+ levels and 45 kDa-protein phosphorylation. The results suggest that at least some of the effects of GDP[beta S] may be unrelated to inhibition of G-protein-GTP interaction, but, instead, may be mediated via an extracellular site, common to all the nucleotides tested and perhaps via inhibition of the effects of endogenous/released ADP. The usefulness of GDP[beta S] as a tool in studying G-protein-GTP interactions in platelets is thus questionable.

This publication has 18 references indexed in Scilit: