Genomic mapping within the albino-deletion complex using individual early postimplantation mouse embryos

Abstract
Sensitive methods for analysis of DNA from limited amounts of tissue are often difficult, error prone, and time consuming. Here, we describe a procedure for molecular analysis of individual early post-implantation mouse embryos by Southern analysis. The procedure involves embedding single embryos in agarose before lysing and deproteinizing in situ. The embedded DNA can be digested with restriction enzymes and analyzed by standard Southern-blotting procedures. The procedure is sensitive enough to detect single-copy sequences in embryos as early as day 6.5 of development. We have used the technique to genotype embryos homozygous for an embryonic lethal deletion. Normally, the lethal phenotype associated with such mutations is identified by a retrospective statistical analysis of abnormal embryos produced from a heterozygous cross as compared to those produced from a control cross. Now, if associated with a detectable DNA abnormality, the mutant embryo can be genotyped directly. We also report the use of this method for mapping cloned markers relative to deletion breakpoints. This approach can save considerable time since mapping would conventionally be done using restriction fragment length polymorphisms (RFLPs) detected in Mus musculus/Mus spretus interspecies hybrids. Using this procedure, we have been able to redefine the distal limits of the region of Chromosome (Chr) 7 containing a gene (eed) needed for development of the embryonic ectoderm.