Water-based Si3N4 suspensions: Part I. Effect of processing routes on the surface chemistry and particle interactions

Abstract
Si3N4 powders manufactured by two different preparative routes were characterized for the solid–liquid interfacial reactivity and surface composition. Three mixing processes were tried to investigate the modifications of silicon nitride particle surface in aqueous suspensions. The surfaces of the starting powders and the dried mixed powders were investigated by x-ray photoelectron spectroscopy to determine the nature and ratios of surface groups. Electroacoustic measurements show that no change occurs in the isoelectric point for the mixed Si3N4 powders while the milling/mixing process has a great influence on the zeta potential magnitude and particle size distribution.