Estradiol-17β stimulates proliferation of mouse embryonic stem cells: involvement of MAPKs and CDKs as well as protooncogenes

Abstract
Although the importance of estradiol-17β (E2) in many physiological processes has been reported, to date no researchers have investigated the effects of E2 on embryonic stem (ES) cell proliferation. Therefore, in the present study, we have examined the effect of E2 on the DNA synthesis of murine ES (ES-E14TG2a) cells and its related signaling pathways. The results of this study show that E2 (10−9 M) significantly increased [3H]thymidine incorporation at >4 h and that E2 (>10−12 M) induced an increase of [3H]thymidine incorporation after 8-h incubation. Moreover, E2 (>10−12 M) also increased 5′-bromo-2′-deoxyuridine (BrdU) incorporation and cell number. Indeed, E2 stimulated estrogen receptor (ER)-α and -β protein levels and increased mRNA expression levels of protooncogenes (c- fos, c- jun, and c- myc). Tamoxifen (antiestrogen) completely inhibited E2-induced increases in [3H]thymidine incorporation. In addition, estradiol-6- O-carboxymethyl oxime-BSA (E2-BSA; 10−9 M) increased [3H]thymidine incorporation at >1 h, and E2-BSA (>10−12 M) increased [3H]thymidine incorporation after 1-h incubation. E2-BSA-induced increase in BrdU incorporation also occurred in a dose-dependent manner. Tamoxifen had no effect on E2-BSA-induced increase of [3H]thymidine incorporation. Also, E2 and E2-BSA displayed maximal phosphorylation of p44/42 MAPKs at 10 and 5 min, respectively. E2 increased cyclins D1 and E as well as cyclin-dependent kinase (CDK)2 and CDK4. In contrast, E2 decreased the levels of p21cip1 and p27kip1 (CDK-inhibitory proteins). Increases of these cell cycle regulators were blocked by 10−5 M PD-98059 (MEK inhibitor). Moreover, E2-induced increase of [3H]thymidine incorporation was inhibited by PD-98059 or butyrolactone I (CDK2 inhibitor). In conclusion, estradiol-17β stimulates the proliferation of murine ES cells, and this action is mediated by MAPKs, CDKs, or protooncogenes.