Catalytic Cleavage of the C-H and C-C Bonds of Alkanes by Surface Organometallic Chemistry: An EXAFS and IR Characterization of a Zr-H Catalyst

Abstract
The catalytic cleavage under hydrogen of the C & singlebond;H and C & singlebond;C bonds of alkanes with conventional catalysts requires high temperatures. Room-temperature hydrogenolysis of simple alkanes is possible on a well-defined and well-characterized zirconium hydride supported on silica obtained by surface organometallic chemistry. The surface structure resulting from hydrogenolysis of (≡SiO)Zr(Np)3 (Np, neopentyl) was determined from the extended x-ray absorption fine structure (EXAFS) and 1H and 29Si solid-state nuclear magnetic resonance and infrared (IR) spectra. A mechanism for the formation of (≡SiO)3Zr-H and (≡SiO)2SiH2 and the resulting low-temperature hydrogenolysis of alkanes is proposed. The mechanism may have implications for the catalytic formation of methane, ethane, and lower alkanes in natural gas.

This publication has 20 references indexed in Scilit: