Observation ofZitterbewegungin a spin-orbit-coupled Bose-Einstein condensate

Abstract
Spin-orbit-coupled ultracold atoms provide an intriguing new avenue for the study of rich spin dynamics in superfluids. In this Rapid Communication, we observe Zitterbewegung, the simultaneous velocity (thus position) and spin oscillations, of neutral atoms between two spin-orbit-coupled bands in a Bose-Einstein condensate (BEC) through sudden quantum quenches of the Hamiltonian. The observed Zitterbewegung oscillations are perfect on a short time scale but gradually damp out on a long time scale, followed by sudden and strong heating of the BEC. As an application, we also demonstrate how Zitterbewegung oscillations can be exploited to populate the upper spin-orbit band and observe a subsequent dipole motion. Our experimental results are corroborated by a theoretical and numerical analysis and showcase the great flexibility that ultracold atoms provide for investigating rich spin dynamics in superfluids.