An analysis of the hydrogen bond in BASE-HF complexes using the theory of atoms in molecules

Abstract
The nature, energetics and mechanism of BASE-HF hydrogen bonding (where BASE = OC, SC, N2, HCN, H3N, O3, SCO, CO2, N2O, SO2, H2CO, H2O, HF, H3P, H2S and HCl) are examined using the theory of atoms in molecules. The results are obtained from RHF/6-311 + +G**//6-31 G** calculations. A quantitative description of the electron redistribution and changes in atomic properties, including populations, energies, volumes and moments upon hydrogen bond formation are given by the theory, information which in turn provides a qualitative understanding of the hydrogen bond. A hydrogen bond results from the interaction of two closed-shell systems and the theory quantifies the concept of the mutual penetration of the van der Waals envelopes of the acid and base molecules. It is found that the extent of this penetration and the factors which govern it are of paramount importance in determining the strength of the interaction.