Autoregulation of tubulin synthesis in enucleated cells

Abstract
The effects on tubulin messenger RNA levels and tubulin protein synthesis of treating cells with microtubule-depolymerizing drugs or directly microinjecting cells with tubulin have suggested that non-polymerized tubulin depresses its own synthesis. The precise level of this control is unclear. It has been shown that enucleated cells, termed cytoplasts, retain many properties of the original cell, including maintenance of cell shape, pinocytic activity and locomotion as well as biosynthetic activities such as protein synthesis and replication of cytoplasmic viruses. Furthermore, cytoplasts retain most of the components of the cytoskeleton including the centrioles. If cytoplasmic activities alone are responsible for regulating tubulin biosynthesis, cytoplasts should contain the necessary components. To distinguish between regulation which would occur in the nucleus, that is, alterations in mRNA synthesis or modifications of the mRNA, from alterations in mRNA stability and/or translatability which would take place in the cytoplasm, we examined the autoregulation of tubulin synthesis in enucleated cells. Here, we report that enucleated mouse fibroblasts retain the ability to turn off tubulin protein synthesis in response to microtubule depolymerization, the reduction in tubulin synthesis being accompanied by a corresponding decrease in tubulin mRNA levels. Thus, transcription, processing and transport of tubulin mRNA from the nucleus are not likely to be the loci of regulation. Instead, tubulin must reduce, either directly or indirectly, the translatability of its own mRNA.