Abstract
Selection of steady needle crystals in the full nonlocal symmetric model of dendritic growth is considered. The diffusion equation and associated kinematic and thermodynamic boundary conditions are recast into a nonlinear integral equation which is solved numerically. For the range of Péclet numbers and capillarity lengths considered it is found that a smooth solution exists only if anisotropy is included in the capillarity term of the Gibbs-Thomson condition. The behavior of the selected velocity and tip radius as a function of undercooling is also examined.