SNPdetector: A Software Tool for Sensitive and Accurate SNP Detection

Abstract
Identification of single nucleotide polymorphisms (SNPs) and mutations is important for the discovery of genetic predisposition to complex diseases. PCR resequencing is the method of choice for de novo SNP discovery. However, manual curation of putative SNPs has been a major bottleneck in the application of this method to high-throughput screening. Therefore it is critical to develop a more sensitive and accurate computational method for automated SNP detection. We developed a software tool, SNPdetector, for automated identification of SNPs and mutations in fluorescence-based resequencing reads. SNPdetector was designed to model the process of human visual inspection and has a very low false positive and false negative rate. We demonstrate the superior performance of SNPdetector in SNP and mutation analysis by comparing its results with those derived by human inspection, PolyPhred (a popular SNP detection tool), and independent genotype assays in three large-scale investigations. The first study identified and validated inter- and intra-subspecies variations in 4,650 traces of 25 inbred mouse strains that belong to either the Mus musculus species or the M. spretus species. Unexpected heterozgyosity in CAST/Ei strain was observed in two out of 1,167 mouse SNPs. The second study identified 11,241 candidate SNPs in five ENCODE regions of the human genome covering 2.5 Mb of genomic sequence. Approximately 50% of the candidate SNPs were selected for experimental genotyping; the validation rate exceeded 95%. The third study detected ENU-induced mutations (at 0.04% allele frequency) in 64,896 traces of 1,236 zebra fish. Our analysis of three large and diverse test datasets demonstrated that SNPdetector is an effective tool for genome-scale research and for large-sample clinical studies. SNPdetector runs on Unix/Linux platform and is available publicly (http://lpg.nci.nih.gov). Single nucleotide polymorphisms (SNPs) are an abundant and important class of heritable genetic variations, and many of them contribute to genetic diseases. Accurate and automated detection of SNPs as heterozygous alleles in fluorescence-based sequencing traces from diploid DNA samples is challenging because of the low signal-to-noise ratio in the data, and because of sequencing artifacts associated with the various DNA sequencing chemistries. The authors of this publication have developed a new computer program, SNPdetector, that improves upon existing software tools. The main design principle of SNPdetector was to model the process of human visual inspection of experienced analysts. The new tool is able to cut down significantly on both false positive and false negative discovery rates. Good performance can be achieved, without the need for retraining, in substantially different datasets such as SNP discovery in human resequencing data, mutation discovery in zebra fish candidate genes, and discovery of inter- and intra-subspecies variations in inbred mouse strains. The results demonstrate that this software tool is suitable for the automation of SNP discovery in diploid sequencing traces, and permits a substantial reduction of costly and laborious visual data analysis.