Donor-Acceptor Complexes in Copolymerization. XVIII. Alternating Diene–Dienophile Copolymers. 1. Conjugated Diene–Maleic Anhydride Copolymers through Radical-Catalyzed Polymerization

Abstract
The copolymerization of isoprene, butadiene, and other conjugated dienes with maleic anhydride was readily initiated in polar solvents by conventional free radical catalysts, including peroxides, hydroperoxides, and azobisisobutyronitrile, at high concentrations or at temperatures at which the catalyst had a half-life of 1 hr or less and the total reaction time was 0.5-1 hr. Decreasing the reaction temperature or the rate of catalyst addition resulted in increased yields of Diels-Alder adduct and decreased yields of copolymer. The molecular weight decreased as the temperature increased. Dioxane and tetrahydrofuran peroxides, obtained by the passage of oxygen or UV irradiation in air, also initiated the copolymerization. The soluble diene-maleic anhydride copolymers were equimolar and alternating, had [n] 0.1-6 (cyclohexanone) and contained 75-95% 1,4 structure according to ozonolysis, titration with IC1 and NMR. The IR spectrum of the butadiene–maleic anhydride copolymer indicated 75-95% cis-1,4, 5-20% trans-1,4 and 0-5% 1,2-vinyl unsaturation. The proposed mechanism of polymerization involves a donor-acceptor (diene-dienophile) interaction generating a ground-state charge transfer complex which is readily converted to the cyclic adduct. Under the influence of radicals the ground-state complex is transformed into an excited complex which undergoes polymerization. High concentrations of radicals are necessary to generate polymerizable excited complexes in competition with adduct formation.

This publication has 21 references indexed in Scilit: