Overexpression of Pto Induces a Salicylate-Independent Cell Death But Inhibits Necrotic Lesions Caused by Salicylate-Deficiency in Tomato Plants
Open Access
- 1 July 2002
- journal article
- Published by Scientific Societies in Molecular Plant-Microbe Interactions®
- Vol. 15 (7), 654-661
- https://doi.org/10.1094/mpmi.2002.15.7.654
Abstract
Tomato plants overexpressing the disease resistance gene Pto (35S::Pto) exhibit spontaneous cell death, accumulation of salicylic acid (SA), elevated expression of pathogenesis-related genes, and enhanced resistance to a broad range of pathogens. Because salicylate plays an important role in the cell death and defense activation in many lesion mimic mutants, we investigated the interaction of SA-mediated processes and the 35S::Pto-mediated defense pathway by introducing the nahG transgene that encodes salicylate hydroxylase. Here, we show that SA is not required for the 35S::Pto-activated microscopic cell death and plays a minor role in defense gene activation and general disease resistance in 35S::Pto plants. In contrast, temperature greatly affects the spontaneous cell death and general resistance in 35S::Pto plants, and high temperature inhibits the cell death. The NahG tomato plants develop spontaneous, unconstrained necrotic lesions on leaves. These lesions also are initiated by the inoculation of a virulent strain of Pseudomonas syringae pv. tomato. However, the NahG-dependent necrotic lesions are inhibited in the NahG/35S::Pto plants. This inhibition is most pronounced under conditions favoring the 35S::Pto-mediated spontaneous cell death development. These results indicate that the signaling pathways activated by Pto overexpression suppress the cellular damage that is caused by SA depletion. We also found that ethylene is dispensable for the 35S::Pto-mediated general defense.Keywords
This publication has 38 references indexed in Scilit:
- Expression of 35S::Pto Globally Activates Defense-Related Genes in Tomato PlantsPlant Physiology, 2001
- Characterizing Rice Lesion Mimic Mutants and Identifying a Mutant with Broad-Spectrum Resistance to Rice Blast and Bacterial BlightMolecular Plant-Microbe Interactions®, 2000
- Positive and Negative Regulation of Salicylic Acid-Dependent Cell Death and Pathogen Resistance in Arabidopsis lsd6 and ssi1 MutantsMolecular Plant-Microbe Interactions®, 2000
- Characterization of Acquired Resistance in Lesion-Mimic Transgenic Potato Expressing Bacterio-OpsinMolecular Plant-Microbe Interactions®, 1997
- Salicylate-Independent Lesion Formation in Arabidopsis lsd MutantsMolecular Plant-Microbe Interactions®, 1997
- Initiation of Plant Disease Resistance by Physical Interaction of AvrPto and Pto KinaseScience, 1996
- Disease lesion mimics of maize: A model for cell death in plantsBioEssays, 1995
- Coordinated Activation of Programmed Cell Death and Defense Mechanisms in Transgenic Tobacco Plants Expressing a Bacterial Proton Pump.Plant Cell, 1995
- The never ripe mutation blocks ethylene perception in tomato.Plant Cell, 1994
- Inhibition of the hypersensitive reaction of soybean leaves to incompatible Pseudomonas spp. by blasticidin S, streptomycin or elevated temperaturePhysiological Plant Pathology, 1981