Oxidised‐HDL3 induces the expression of PAI‐1 in human endothelial cells. Role of p38MAPK activation and mRNA stabilization

Abstract
Modified lipoproteins have been suggested to modulate endothelial expression of plasminogen activator inhibitor-1 (PAI-1). As oxidized high-density lipoprotein (Ox-HDL) has been found in atheromatous plaques and receptors for modified HDL are present on endothelial cells, we investigated the role of Ox-HDL3 on the expression of PAI-1. Ox-HDL3 but not native HDL3, increased PAI-1 mRNA expression in endothelial cells. Furthermore, PAI-1 antigen expression and activity increased in the supernatant of cells incubated with Ox-HDL3. The intracellular pathways involved in this effect were investigated. Ox-HDL3 activated both extracellular signal-regulated kinases (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK). Moreover, incubation with specific inhibitors of these kinases showed that p38MAPK was mainly involved in the Ox-HDL3-dependent PAI-1 induction. Transient transfection experiments suggested that none of the response elements in the proximal promoter (-804 to 17) were involved in Ox-HDL3-mediated PAI-1 expression. mRNA stability experiments showed that Ox-HDL3 increased the PAI-1 mRNA half-life. In summary, Ox-HDL3 induced PAI-1 mRNA expression and antigen release through a molecular mechanism involving MAPK activation and mRNA stabilization. Thus, oxidative modification converts HDL to a prothrombotic lipoprotein species.

This publication has 34 references indexed in Scilit: