Two-Libron Spectrum of SolidH2andD2

Abstract
It is shown that the "two-libron" lines in the Raman spectrum of solid hydrogen result from the large cubic anharmonicity of the quadrupole-quadrupole Hamiltonian. A localized picture is used to describe the interaction of two librational excitations on neighboring molecules, and dynamic interactions with other molecules are treated perturbatively. In this approximation the average single-libron energy agrees with the anharmonic calculation in the accompanying paper. Using a value of the quadrupole-coupling constant obtained from the single-libron spectrum, the resulting two-libron energies and Raman transition probabilities are in excellent agreement with the observed spectrum.