Effective doses to patients undergoing thoracic computed tomography examinations

Abstract
The purpose of this study was to investigate how x-ray technique factors and effective doses vary with patient size in chest CT examinations. Technique factors (kVp, mAs, section thickness, and number of sections) were recorded for 44 patients who underwent a routine chest CT examination. Patient weights were recorded together with dimensions and mean Hounsfield unit values obtained from representative axial CT images. The total mass of directly irradiated patient was modeled as a cylinder of water to permit the computation of the mean patient dose and total energy imparted for each chest CT examination. Computed values of energy imparted during the chest CT examination were converted into effective doses taking into account the patient weight. Patient weights ranged from 4.5 to 127 kg, and half the patients in this study were children under 18 years of age. All scans were performed at 120 kVp with a 1 s scan time. The selected tube current showed no correlation with patient weight (r2=0.06), indicating that chest CT examination protocols do not take into account for the size of the patient. Energy imparted increased with increasing patient weight, with values of energy imparted for 10 and 70 kg patients being 85 and 310 mJ, respectively. The effective dose showed an inverse correlation with increasing patient weight, however, with values of effective dose for 10 and 70 kg patients being 9.6 and 5.4 mSv, respectively. Current CT technique factors (kVp/mAs) used to perform chest CT examinations result in relatively high patient doses, which could be reduced by adjusting technique factors based on patient size.