Attachment and metamorphosis of the cheilo‐ctenostome bryozoan bugula neritina (linné)

Abstract
The structure, attachment and subsequent metamorphosis of larvae of the marine bryozoan Bugula neritina were studied by light and electron microscopy. Two points of larval anatomy are of special significance to proper interpretation of the metamorphosis: 1 Two cytologically similar blastemal tissues, each laden with free ribosomes, occur as parts of the apical organ complex. The upper blastema directly contacts the larval surface, forming the non-ciliated rows of the apical organ. The lower blastema is internal and is oral to and contiguous with the upper blastema. 2 The epidermal tissues of the larva are joined in the following sequence, beginning at the aboral pole: a. apical organ complex; b. apical-connecting cell; c. infolded pallial sinus epithelium; d. vesicular-connecting cell; e. aboral vesicular epithelium; f. corona; g. oral vesicular epithelium; and i., j., and k. internal sac neck, wall and roof regions. The initial stages of metamorphosis involve a complex sequence of morphogenetic movements, including: 1 eversion of the internal sac, permanently attaching the larva to the substrate; 2 inrolling of the aboral vesicular epithelium, corona, oral vesicular and ciliated epithelia, and neck region of the internal sac into the larval interior; concomitantly the pallial sinus epithelium evaginates; 3 loss of connection between the invaginated tissues and the surface; 4 fusion of the pallial sinus epithelium with the wall region of the internal sac, maintaining the integrity of the body surface; 5 retraction of the apical organ complex and invagination of the pallial sinus epithelium with the simultaneous elevation of the internal sac wall region to the aboral pole. At the conclusion of these events the preancestrular surface is covered by the wall and roof regions of the internal sac. Cells of the wall region form the epidermis of the body wall except for the attachment disc and secrete a cuticular exoskeleton that is secondarily calcified; the attachment disc is formed by the roof region of the internal sac. Internally, the ectodermal upper blastema differentiates into the lophophore and digestive tract of the ancestrular polypide, while the lower blastema forms the lining of the lophophoral coelom and the splanchnic (but not the somatic) lining of the visceral coelom. The visceral somatic peritoneum is formed from cells that may originate from the mesodermally derived pigmented cells of the larva to which they are similar in pigmentation and cytology. Such a composite derivation of a coelomic lining has not been described previously.