Activity of vacuolar ion channels can be regulated by the cytosolic free Ca2+ concentration ([Ca2+]cyt). Using the whole-vacuole mode of patch-clamp with Vicia faba guard cell vacuoles, three distinct cation currents were apparent that were differentially regulated by [Ca2+]cyt. At 'zero' to 100 nM [Ca2+]cyt, instantaneous currents typical of Fast Vacuolar (FV) channels were activated. A 10 fold KCl gradient directed out of the vacuole increased FV currents (up to fivefold) at negative potentials compared with the currents in symmetrical KCl. At [Ca2+]cyt higher than 100 nM, instantaneous currents became smaller and voltage-independent (non-rectifying) and were typical of Vacuolar K(+)-selective (VK) channels. These currents were less sensitive to a KCl gradient than were the FV currents, being stimulated less than twofold at negative potentials. Reversal potentials measured in the presence of a KCl gradient indicated a high K+ permeability of both FV and VK currents. At [Ca2+]cyt higher than 600 nM time-dependent currents elicited by positive potentials were typical of Slow Vacuolar (SV) channel activation. When the Ca2+ mole fraction in the cytosolic or luminal solution was varied the reversal potential of SV currents (determined by tail current analysis) passed through maximum or minimum values. The resultant calculated apparent permeability ratios varied with ionic conditions but indicated high Ca2+ and K+ permeabilities. If a Cl- permeability was assumed then the apparent PCa was lower. However, substitution of Cl- by the larger (impermeant) anion gluconate had no effect on the reversal potential of SV tail currents in the presence of Ca2+ and a K+ gradient, demonstrating that the assumption of Cl- permeability of the SV channel is invalid. Single-channel SV currents also decreased with increasing cytosolic Ca2+ mole fraction. These data indicate that the SV channel is highly cation selective, shows characteristics typical of a multi-ion pore and derives ion selectivity by Ca2+ binding. The SV channel currents could also be Mg(2+)-activated and were demonstrated to be Mg(2+)-permeable in the absence of Ca2+. The apparent permeability ratio (PMg:PK) also varied under different ionic conditions. The results indicate not only that FV, VK and SV channels are all present in a single cell type, but also that each is differentially regulated by [Ca2+]cyt. The respective roles of these channels in vacuolar ion release are discussed, and possible conditions are presented in which these channels could be activated by disparate signalling pathways during stomatal closure.