Geology, geochronology and chemical evolution of the island of Pantelleria

Abstract
Potassium–argon dating, field relations, geochemical and strontium-isotope compositions are reported for the island of Pantelleria (Strait of Sicily, Italy). These data support the following model for the genesis and evolution through time of the volcanic system: the peralkaline rocks originated from mantle-derived parental magmas; the trachytic magma differentiated in a low pressure magma chamber by crystal–liquid fractionation. This process led to a chemically zoned magma chamber tapped at different levels by successive eruptions. During low-pressure differentiation the 87Sr/86Sr ratios of some of the most evolved Sr-poor rhyolitic magmas increased from 0.703 up to 0.708 by contamination with crustal material.The chemical variation displayed by the products of each of the defined eruptive cycles in the last 50000 years suggests an open system behaviour of the magma chamber which is episodically refilled by more mafic parent magma, differentiated at high rate and episodically erupted.

This publication has 49 references indexed in Scilit: