Non-structural carbohydrate pools in a tropical forest
- 1 December 2004
- journal article
- research article
- Published by Springer Nature in Oecologia
- Vol. 143 (1), 11-24
- https://doi.org/10.1007/s00442-004-1773-2
Abstract
The pool size of mobile, i.e. non-structural carbohydrates (NSC) in trees reflects the balance between net photosynthetic carbon uptake (source) and irreversible investments in structures or loss of carbon (sink). The seasonal variation of NSC concentration should reflect the sink/source relationship, provided all tissues from root to crown tops are considered. Using the Smithsonian canopy crane in Panama we studied NSC concentrations in a semi-deciduous tropical forest over 22 months. In the 9 most intensively studied species (out of the 17 investigated), we found higher NSC concentrations (starch, glucose, fructose, sucrose) across all species and organs in the dry season than in the wet season (NSC 7.2% vs 5.8% of dry matter in leaves, 8.8/6.0 in branches, 9.7/8.5 in stems, 8.3/6.4 in coarse and 3.9/2.2 in fine roots). Since this increase was due to starch only, we attribute this to drought-constrained growth (photosynthesis less affected by drought than sink activity). Species-specific phenological rhythms (leafing or fruiting) did not overturn these seasonal trends. Most of the stem volume (diameter at breast height around 40 cm) stores NSC. We present the first whole forest estimate of NSC pool size, assuming a 200 t ha−1 forest biomass: 8% of this i.e. ca. 16 t ha−1 is NSC, with ca. 13 t ha−1 in stems and branches, ca. 0.5 and 2.8 t ha−1 in leaves and roots. Starch alone (ca. 10.5 t ha−1) accounts for far more C than would be needed to replace the total leaf canopy without additional photosynthesis. NSC never passed through a period of significant depletion. Leaf flushing did not draw heavily upon NSC pools. Overall, the data imply a high carbon supply status of this forest and that growth during the dry season is not carbon limited. Rather, water shortage seems to limit carbon investment (new tissue formation) directly, leaving little leeway for a direct CO2 fertilization effects.Keywords
This publication has 43 references indexed in Scilit:
- Cloud cover limits net CO 2 uptake and growth of a rainforest tree during tropical rainy seasonsProceedings of the National Academy of Sciences, 2003
- In deep shade, elevated CO2 increases the vigor of tropical climbing plantsGlobal Change Biology, 2002
- New advances in carbon cycle researchTrends in Ecology & Evolution, 2002
- ARE TROPICAL FORESTS AN IMPORTANT CARBON SINK? REANALYSIS OF THE LONG-TERM PLOT DATAEcological Applications, 2002
- Seasonal Differences in Nonstructural Carbohydrates in Two Dioecious Monsoon-Climate TreesBiotropica, 1992
- The Ecology and Economics of Storage in PlantsAnnual Review of Ecology and Systematics, 1990
- Effect of Phosphorus Deficiency on Source-Sink Interactions Between the Flag Leaf and Developing Grain in BarleyJournal of Experimental Botany, 1988
- Flora of Panama : checklist and index /Published by Smithsonian Institution ,1987
- The Storage and Production of Organic Matter in Tropical Forests and Their Role in the Global Carbon CycleBiotropica, 1982
- Flora of Barro Colorado IslandTaxon, 1979