A Truncated Form of KlLsm4p and the Absence of Factors Involved in mRNA Decapping Trigger Apoptosis in Yeast

Abstract
The LSM4 gene of Saccharomyces cerevisiae codes for an essential protein involved in pre-mRNA splicing and also in mRNA decapping, a crucial step for mRNA degradation. We previously demonstrated that the first 72 amino acids of the Kluyveromyces lactis Lsm4p (KlLsm4p), which contain the Sm-like domains, can restore cell viability in bothK. lactis and S. cerevisiae cells not expressing the endogenous protein. However, the absence of the carboxy-terminal region resulted in a remarkable loss of viability in stationary phase cells (Mazzoni and Falcone, 2001). Herein, we demonstrate that S. cerevisiae cells expressing the truncated LSM4 protein of K. lactisshowed the phenotypic markers of yeast apoptosis such as chromatin condensation, DNA fragmentation, and accumulation of reactive oxygen species. The study of deletion mutants revealed that apoptotic markers were clearly evident also in strains lacking genes involved in mRNA decapping, such as LSM1, DCP1, andDCP2, whereas a slight effect was observed in strains lacking the genes DHH1 and PAT1. This is the first time that a connection between mRNA stability and apoptosis is reported in yeast, pointing to mRNA decapping as the crucial step responsible of the observed apoptotic phenotypes.