Abstract
We present the maximum likelihood estimation (MLE) via particle swarm optimization (PSO) algorithm to estimate the mixture of two Weibull parameters with complete and multiple censored data. A simulation study is conducted to assess the performance of the MLE via PSO algorithm, quasi-Newton method and expectation-maximization (EM) algorithm for different parameter settings and sample sizes in both uncensored and censored cases. The simulation results showed that the PSO algorithm outperforms the quasi-Newton method and the EM algorithm in most cases regarding bias and root mean square errors. Two numerical examples are used to demonstrate the performance of our proposed method.