Design and Evaluation of a Reconfigurable Antenna Array for MIMO Systems

Abstract
New reconfigurable antenna array is demonstrated for multiple input multiple output (MIMO) communication systems that improves link capacity in closely spaced antenna arrays. The antenna system consists of an array of two printed dipoles separated by a distance of a quarter wavelength. Each of the dipoles can be reconfigured in length using PIN diode switches. The switch configuration can be modified in a manner adaptive to changes in the environment. The configuration of switches effects the mutual coupling between the array elements, and subsequently, the radiation pattern of each antenna, leading to different degrees of pattern diversity which can be used to improve link capacity. The PIN diode-based reconfigurable antenna solution is first motivated through a capacity analysis of the antenna in a clustered MIMO channel model. A new definition of spatial correlation coefficient is introduced to include the effects of antenna mismatch and radiation efficiency when quantifying the benefit of pattern diversity. Next, the widespread applicability of the proposed technique is demonstrated, relative to conventional half wavelength printed dipoles, using computational electromagnetic simulation in an outdoor and indoor environment and field measurements in an indoor laboratory environment. It is shown for the 2 times 2 system considered in this paper, that an average improvement of 10% and 8% is achieved in link capacity for a signal to noise ratio (SNR) respectively of 10 dB and 20 dB in an indoor environment compared to a system employing non reconfigurable antenna arrays.

This publication has 32 references indexed in Scilit: