Ras/MEK signaling suppresses Myc-dependent apoptosis in cells transformed by c-myc and activated ras

Abstract
Cooperation of myc and activated ras has been suggested to cause malignant cell transformation but the mechanism is still unknown. Here we isolated a transformed cell line in which activation of c-Myc and Ras are independently controllable, and show that after establishment of the transformed state by c-myc and activated ras, removal of activated Ras initiates apoptosis that is dependent on c-Myc activity. Apoptosis is also initiated by an inhibitor of MEK (MAPK/ERK kinase), a kinase downstream of Ras, and apoptosis is blocked by activated Mek1. These results suggest that one of the conditions required for establishment of the transformed state is a block of apoptosis involving MEK activity. We tested the effect of MEK inhibition on cells transformed by various oncogenes. Suppression of apoptosis by MEK is not critical in general, but in cells transformed by c-myc plus a gene that activates the MAPK cascade it is necessary to avoid cell death. Activated Ras/MEK did not suppress c-myc-dependent apoptosis due to serum-limitation. Overexpression of chicken bcl-xL suppressed apoptosis under serum-limiting conditions, but not apoptosis initiated by Ras/MEK inhibition in cells transformed by myc and activated ras. Altogether, these results suggest the existence of a novel regulatory mechanism for myc-dependent apoptosis in certain transformed cells.