Learning, invariance, and generalization in high-order neural networks

Abstract
High-order neural networks have been shown to have impressive computational, storage, and learning capabilities. This performance is because the order or structure of a high-order neural network can be tailored to the order or structure of a problem. Thus, a neural network designed for a particular class of problems becomes specialized but also very efficient in solving those problems. Furthermore, a priori knowledge, such as geometric invariances, can be encoded in high-order networks. Because this knowledge does not have to be learned, these networks are very efficient in solving problems that utilize this knowledge.