Genetic Relationships between Clinical Isolates of Streptococcus pneumoniae , Streptococcus oralis , and Streptococcus mitis : Characterization of “Atypical” Pneumococci and Organisms Allied to S. mitis Harboring S. pneumoniae Virulence Factor-Encoding Genes
Open Access
- 1 March 2000
- journal article
- Published by American Society for Microbiology in Infection and Immunity
- Vol. 68 (3), 1374-1382
- https://doi.org/10.1128/iai.68.3.1374-1382.2000
Abstract
The oral streptococcal group (mitis phylogenetic group) currently consists of nine recognized species, although the group has been traditionally difficult to classify, with frequent changes in nomenclature over the years. The pneumococcus (Streptococcus pneumoniae), an important human pathogen, is traditionally distinguished from the most closely related oral streptococcal speciesStreptococcus mitis and Streptococcus oralis on the basis of three differentiating characteristics: optochin susceptibility, bile solubility, and agglutination with antipneumococcal polysaccharide capsule antibodies. However, there are many reports in the literature of pneumococci lacking one or more of these defining characteristics. Sometimes called “atypical” pneumococci, these isolates can be the source of considerable confusion in the clinical laboratory. Little is known to date about the genetic relationships of such organisms with classical S. pneumoniae isolates. Here we describe these relationships based on sequence analysis of housekeeping genes in comparison with previously characterized isolates of S. pneumoniae,S. mitis, and S. oralis. While most pneumococci were found to represent a closely related group these studies identified a subgroup of atypical pneumococcal isolates (bile insoluble and/or “acapsular”) distinct from, though most closely related to, the “typical” pneumococcal isolates. However, a large proportion of isolates, found to be atypical on the basis of capsule reaction alone, did group with typical pneumococci, suggesting that they have either lost capsule production or represent as-yet-unrecognized capsular types. In contrast to typical S. pneumoniae, isolates phenotypically identified as S. mitis and S. oralis, which included isolates previously characterized in taxonomic studies, were genetically diverse. While most of the S. oralis isolates did fall into a well-separated group, S. mitis isolates did not cluster into a well-separated group. During the course of these studies we also identified a number of potentially important pathogenic isolates, which were frequently associated with respiratory disease, that phenotypically and genetically are most closely related to S. mitis but which harbor genes encoding the virulence determinants pneumolysin and autolysin classically associated with S. pneumoniae.Keywords
This publication has 72 references indexed in Scilit:
- Horizontal gene transfer and the evolution of resistance and virulence determinants in StreptococcusJournal of Applied Microbiology, 1997
- Clonal diversity of the Streptococcus mitis biovar 1 population in the human oral cavity and pharynxOral Microbiology and Immunology, 1995
- A scheme for the identification of viridans streptococciJournal of Medical Microbiology, 1991
- Identification of atypical strains ofStreptococcus pneumoniae by a specific DNA probeEuropean Journal of Clinical Microbiology & Infectious Diseases, 1990
- Optochin-resistant variants of Streptococcus pneumoniaeDiagnostic Microbiology and Infectious Disease, 1990
- OPTOCHIN-RESISTANT STREPTOCOCCUS PNEUMONIAEThe Lancet, 1988
- Optochin resistance inStreptococcus pneumoniae strains isolated from blood and middle ear fluidEuropean Journal of Clinical Microbiology & Infectious Diseases, 1987
- Searching for autolysin functions. Characterization of a pneumococcal mutant deleted in the lytA geneEuropean Journal of Biochemistry, 1986
- Identification of streptococci in a medical laboratoryJournal of Applied Bacteriology, 1984
- Epidemiology of Clinically Significant Isolates of Streptococcus pneumoniae in the United StatesClinical Infectious Diseases, 1981