Phosphorylated Neurofilament Antigens in Neurofibrillary Tangles in Alzheimerʼs Disease
- 1 January 1986
- journal article
- research article
- Published by Oxford University Press (OUP) in Journal of Neuropathology and Experimental Neurology
- Vol. 45 (1), 56-64
- https://doi.org/10.1097/00005072-198601000-00005
Abstract
Neurofibrillary tangles (NFT) are a hallmark of Alzheimer's disease (AD), and their presence correlates with the presence of dementia. A major constituent of NFT is the insoluble paired helical filament which shares some antigenic relationships with normal cytoskeletal elements, particularly neurofilaments. Ifneurofilament proteins (200,145–160, and 68 kilodaltons [kdJ) participate in the formation of NFT, the distribution of these constituents might be expected to be abnormal. To examine this issue, we used immunocytochemical methods to localize phosphorylated and nonphosphorylated epitopes of neurofilament proteins in hippocampal neurons of controls and patients with AD. Normally, the 200-kd neurofilament protein is not phosphorylated in the perikarya of neurons. However, in AD, many pyramidal neurons contained immunoreactive phosphorylated neurofilaments. Patterns of immunoreactivity (linear, flame-shaped, or skein-like within perikarya) greatly resembled the appearance of silver-stained NFT. This pattern of immunoreactivity was not present in hippocampal pyramidal neurons in controls, except in one aged patient in whom adjacent silver-stained sections revealed a few NFT. Patterns of immunoreactivity with antibodies for non phosphorylated neurofilament proteins were similar in control and AD neurons. Our results indicate that some NFT are associated with abnormal distributions of high molecular weight phosphorylated neurofilament proteins. One domain of the 200-kd protein is believed to be a component of the side arms which link neurofilaments and interact with microtubules. Abnormal interactions of perikaryal neurofilaments could play a role in the genesis of NFT, and this abnormality of the cytoskeleton could contribute to the dysfunction of neurons at risk in AD.This publication has 25 references indexed in Scilit:
- Multiple phosphorylation sites in mammalian neurofilament polypeptides.Journal of Biological Chemistry, 1982
- Neurofilament protein phosphorylation. Species generality and reaction characteristics.Journal of Biological Chemistry, 1982
- Alzheimer's Disease and Senile Dementia: Loss of Neurons in the Basal ForebrainScience, 1982
- Alzheimer's Disease: Insolubility of Partially Purified Paired Helical Filaments in Sodium Dodecyl Sulfate and UreaScience, 1982
- Antibody decoration of neurofilaments.The Journal of cell biology, 1981
- A MAP-2-stimulated protein kinase activity associated with neurofilamentsBiochemistry, 1981
- AN IMMUNOFLUORESCENCE MICROSCOPICAL STUDY OF THE NEUROFILAMENT TRIPLET PROTEINS, VIMENTIN AND GLIAL FIBRILLARY ACIDIC PROTEIN WITHIN THE ADULT-RAT BRAIN1981
- Presenile Dementia With Lewy Bodies and Neurofibrillary TanglesArchives of Neurology, 1978
- Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with ageing and dementiaActa Neuropathologica, 1977
- Paired Helical Filaments in Electron Microscopy of Alzheimer's DiseaseNature, 1963