Characteristics and limitation of scaled-down MOSFET's due to two-dimensional field effect

Abstract
Practical limitations of minimum-size MOS-LSI devices are investigated through measurement of experimental devices. It is assumed that scaled-down MOSFET's are limited by three physical phenomena. These are 1) poor threshold control which is caused by drain electric field, 2) reduced drain breakdown voltage due to lateral bipolar effects, and 3) hot-electron injection into the gate oxide film which yields performance variations during device operation. Experimental models of these phenomena are proposed and the smallest possible MOSFET structure, for a given supply voltage, is considered. It is concluded that the smallest feasible device has a channel length of 0.52 µm and a gate oxide thickness of 9.4 nm when the supply voltage is 1.5 V. Reliable threshold control is most difficult to realize in an MOS-LSI with the smallest devices.