ENSO and ENSO-related Predictability. Part I: Prediction of Equatorial Pacific Sea Surface Temperature with a Hybrid Coupled Ocean–Atmosphere Model

Abstract
A hybrid coupled model (HCM) of the tropical ocean–atmosphere system is described. The ocean component is a fully nonlinear ocean general circulation model (OGCM). The atmospheric element is a statistical model that specifies wind stress from ocean-model sea surface temperatures (SST). The coupled model demonstrates a chaotic behavior during extended integration that is related to slow changes in the background mean state of the ocean. The HCM also reproduces many of the observed variations in the tropical Pacific ocean-atmosphere system. The physical processes operative in the model together describe a natural mode of climate variability in the tropical Pacific ocean–atmosphere system. The mode is composed of (i) westward-propagating Rossby waves and (ii) an equatorially confined air–sea element that propagates eastward. Additional results showed that the seasonal dependence of the anomalous ocean–atmosphere coupling was vital to the model's ability to both replicate and forecast key features of... Abstract A hybrid coupled model (HCM) of the tropical ocean–atmosphere system is described. The ocean component is a fully nonlinear ocean general circulation model (OGCM). The atmospheric element is a statistical model that specifies wind stress from ocean-model sea surface temperatures (SST). The coupled model demonstrates a chaotic behavior during extended integration that is related to slow changes in the background mean state of the ocean. The HCM also reproduces many of the observed variations in the tropical Pacific ocean-atmosphere system. The physical processes operative in the model together describe a natural mode of climate variability in the tropical Pacific ocean–atmosphere system. The mode is composed of (i) westward-propagating Rossby waves and (ii) an equatorially confined air–sea element that propagates eastward. Additional results showed that the seasonal dependence of the anomalous ocean–atmosphere coupling was vital to the model's ability to both replicate and forecast key features of...