Laser-Assisted Machining of Magnesia-Partially-Stabilized Zirconia

Abstract
Laser-assisted machining (LAM) of magnesia-partially-stabilized zirconia (PSZ) is investigated to determine the effect of heating on machinability, as determined by tool wear, cutting energy, surface integrity, and material removal mechanisms. It is found that PSZ can be successfully machined with a polycrystalline cubic boron nitride tool and that tool life increases with material removal temperature up to a maximum of 121 minutes. The benefit of laser-assistance in material removal is also demonstrated by the 2.5 fold decrease in the specific cutting energy with increased temperature. It is shown surface roughness varies significantly with tool wear with little dependence on cutting temperature unlike in LAM of other ceramics. Evidence of mixed brittle and ductile material removal mechanisms is presented, and the optimum condition within the test matrix is established.

This publication has 17 references indexed in Scilit: