ATPase activity and ATP/ADP‐induced conformational change in the soluble domain of the bacterial protein translocator HlyB

Abstract
The haemolysin exporter HlyB and its homologues are central to the unconventional signal-peptide-independent secretion of toxins, proteases and nodulation proteins by bacteria. HlyB is a member of the ATP-binding cassette (ABC) or traffic ATPase superfamily, and resembles closely in structure and function mammalian exporters such as the multidrug-resistance P-glycoprotein, combining both integral membrane and cytosolic domains. Overproduction of the HlyB cytopiasmic domain as a C -terminal peptide fused to glutathione S-transferase allowed the direct affinity purification and concentration of 30-50 mg ml−1 of soluble protein (GST-Bctp) in an apparently dimeric form possessing both transferase and ATPase activity. GST-Bctp bound to ADP-agarose and was eluted specifically by ATP and ADP, affinity behaviour which was confirmed in both the full-length HlyB and the unfused HlyB cytoplasmic domain synthesized in vitro. The stoichiometry of binding to MgATP and MgADP was close to equimolar and both ligands induced substantial conformational change in the protein. Mg2+ -dependent ATPase activity of GST-Bctp Vmax 17mu;mol min−1 mg−1, Km 0.2 mM) was comparable with the activity of the bacterial importer MalK and human P-glycoprotein reconstituted into proteoliposomes, and over an order of magnitude higher than in vitro measurements of disaggregated MalK purified from inclusion bodies. Activity was unaffected by inhibitors of F- and V-type ATPases, non-hydrolysable ATP analogues, or translocation substrate, but was severely inhibited by inhibitors of E1E2 (P-type) ATPases, and the acidic phospholipid phosphatidyl glycerol.