We have analyzed the evolution of the pattern of lymphokine secretion by Th cell lines specific for either the synthetic terpolymer Glu60Ala30Tyr10 (GAT) or killed bacillus Calmette Guérin. When cultured in the presence of exogenous rIL-2 as a growth factor, GAT-specific Th cell lines secreted mainly IL-4, whereas bacillus Calmette Guérin-specific lines produced predominantly IL-2. However, culturing in the presence of rIL-4 or of anti-IL-4 mAb and rIL-2 led to the establishment of Th2-like and Th1-like lines, respectively, regardless of their Ag specificity. Inasmuch as we show that the proliferative response of mature Th1 and Th2 cells was identical in the presence of IL-4, these results indicate that IL-4 influences the development of Th cell subsets. To understand the mode of IL-4 action, we isolated immature GAT-specific Tho clones able to secrete IL-2 and IL-4. Two types of Tho cells were isolated: ThoA cells that secreted IL-2 and IL-4, but not IFN-gamma, and ThoB cells that secreted IL-2, IL-4, and IFN-gamma. We show for the first time that such cells are indeed Th precursors able to differentiate into Th1 or Th2 cells. We demonstrate that IL-4 positively and negatively controls the differentiation of Tho cells into Th2 and Th1 cells, respectively. When cultured in rIL-4, Tho cells stop secreting IL-2 and IFN-gamma, but maintain IL-4 secretion. Moreover, endogenous IL-4 produced by Tho cells has similar effects: when cultured in rIL-2 alone, Tho cells either keep their immature phenotype or become Th2 cells, but do not become Th1 cells. In contrast, neutralization of secreted IL-4 completely prevents the differentiation of Tho into Th2 cells, but permits the development of Th1 cells. The presence of exogenous IFN-gamma does not affect the development of Tho into Th1 and Th2 cells, because it does not modify either mode of IL-4 action. However, it influences the ratio between the two types of Tho cells: when IL-4 is neutralized, added IFN-gamma can induce IFN-gamma secretion by ThoA cells and thereby facilitate their passage into ThoB cells. Taken together, our results demonstrate that IL-4, in addition to mediating T cell growth, is a principal factor that controls the differential development of Tho cells into Th1 and Th2 cells.