Comparison of new sequences for high-resolution cartilage imaging

Abstract
The high prevalence of osteoarthritis continues to demand improved accuracy in detecting cartilage injury and monitoring its response to different treatments. MRI is the most accurate noninvasive method of diagnosing cartilage lesions. However, MR imaging of cartilage is limited by scan time, signal-to-noise ratio (SNR), and image contrast. Recently, there has been renewed interest in SNR-efficient imaging sequences for imaging cartilage, including various forms of steady-state free-precession as well as driven-equilibrium imaging. This work compares several of these sequences with existing methods, both theoretically and in normal volunteers. Results show that the new steady-state methods increase SNR-efficiency by as much as 30% and improve cartilage-synovial fluid contrast by a factor of three. Additionally, these methods markedly decrease minimum scan times, while providing 3D coverage without the characteristic blurring seen in fast spin-echo images.