A new modeling technique and computer simulation of bacterial growth

Abstract
A mathematical model that describes substrate utilization and cell growth in terms of two potentially rate-limiting enzyme systems has been developed. Consideration of substrate inhibition and enzyme repression have been incorporated. The model provides a rational approach for characterizing non-steady-state phenomena. The model has been used to analyze batch test data to illustrate the effects of inhibition, repression, and concurrent substrate utilization. Its utility lies in the fact that it provides a quantitative framework for describing changes in the activity levels of cells that result from changes in substrate concentration and/or substrate type. The lag phase resulting from exposure to a new substrate can be modeled.

This publication has 43 references indexed in Scilit: