Tumor-derived syndecan-1 mediates distal cross-talk with bone that enhances osteoclastogenesis
Open Access
- 27 May 2010
- journal article
- research article
- Published by Oxford University Press (OUP) in Journal of Bone and Mineral Research
- Vol. 25 (6), 1295-1304
- https://doi.org/10.1002/jbmr.16
Abstract
Tumor-stimulated bone resorption fuels tumor growth and marks a dramatic decline in the health and prognosis of breast cancer patients. Identifying mechanisms that mediate cross-talk between tumor and bone remains a key challenge. We previously demonstrated that breast cancer cells expressing high levels of heparanase exhibit enhanced shedding of the syndecan-1 proteoglycan. Moreover, when these heparanase-high cells are implanted in the mammary fat pad, they elevate bone resorption. In this study, conditioned medium from breast cancer cells expressing high levels of heparanase was shown to significantly stimulate human osteoclastogenesis in vitro (p < .05). The osteoclastogenic activity in the medium of heparanase-high cells was traced to the presence of syndecan-1, intact heparan sulfate chains, and heat-labile factor(s), including the chemokine interleukin 8 (IL-8). The enhanced osteoclastogenesis promoted by the heparanase-high cells results in a dramatic increase in bone resorption in vitro. In addition, the long bones of animals bearing heparanase-high tumors in the mammary fat pad had significantly higher numbers of osteoclasts compared with animals bearing tumors expressing low levels of heparanase (p < .05). Together these data suggest that syndecan-1 shed by tumor cells exerts biologic effects distal to the primary tumor and that it participates in driving osteoclastogenesis and the resulting bone destruction. © 2010 American Society for Bone and Mineral ResearchKeywords
This publication has 52 references indexed in Scilit:
- Heparanase: busy at the cell surfaceTrends in Biochemical Sciences, 2009
- Mechanisms of bone metastases of breast cancerEndocrine-Related Cancer, 2009
- Syndecan-1 regulates αvβ3 and αvβ5 integrin activation during angiogenesis and is blocked by synstatin, a novel peptide inhibitorThe Journal of Experimental Medicine, 2009
- Endocrine Therapy plus Zoledronic Acid in Premenopausal Breast CancerNew England Journal of Medicine, 2009
- Membrane Type 1 Matrix Metalloproteinase–Mediated Stromal Syndecan-1 Shedding Stimulates Breast Carcinoma Cell ProliferationCancer Research, 2008
- Prognostic impact of syndecan-1 expression in invasive ductal breast carcinomasBritish Journal of Cancer, 2008
- Syndecan-1: a dynamic regulator of the myeloma microenvironmentClinical & Experimental Metastasis, 2007
- The syndecan-1 ectodomain regulates αvβ3 integrin activity in human mammary carcinoma cellsThe Journal of cell biology, 2004
- Mechanisms of Bone MetastasisNew England Journal of Medicine, 2004
- Cloning and Functional Expression of a Human Heparanase GeneBiochemical and Biophysical Research Communications, 1999