Photorespiration: metabolic pathways and their role in stress protection

Top Cited Papers
Open Access
Abstract
Soluble, recombinant forms of influenza A virus haemagglutinin and neuraminidase have been produced in cells of lower eukaryotes, and shown in a mouse model to induce complete protective immunity against a lethal virus challenge. Soluble neuraminidase, produced in a baculovirus system, consisted of tetramers, dimers and monomers. Only the tetramers were enzymatically active. The immunogenicity decreased very considerably in the order tetra > di > mono. Therefore, we fused the head part of the neuraminidase gene to a tetramerizing leucine zipper sequence; the resulting product was enzymatically active, tetrameric neuraminidase. The protective immunity induced by this engineered neuraminidase, however, remained fairly strain–specific. A third influenza A virus protein, the M2 protein, has only 23 amino acids exposed on the outer membrane surface. This extracellular part, M2e, has been remarkably conserved in all human influenza A strains since 1933. By fusing the M2e sequence to hepatitis B virus core protein, we could obtain highly immunogenic particles that induced complete, strain–independent, long–lasting protection in mice against a lethal viral challenge. Native M2 is a tetrameric protein and this conformation of the M2e part can also be mimicked by fusing this sequence to a tetramerizing leucine zipper. The potential of the resulting protein as a vaccine candidate remains to be evaluated.