Amelioration of delayed neuronal death in the hippocampus by nerve growth factor

Abstract
Selective neuronal death in the CA1 sector of the hippocampus [delayed neuronal death (DND)] develops several days after transient global cerebral ischemia in rodents. Because NGF plays a potential role in neuronal survival, it was decided to study its effect in DND. We report here that intraventricular injection of NGF either before or after 5 min forebrain ischemia in the Mongolian gerbil significantly reduced the occurrence of DND. The tissue content of NGF in the hippocampus was decreased 2 d after ischemia and recovered to the preischemic level by 1 week. By the Golgi staining technique, changes first began in the dendrites of affected neurons as early as 3 hr. Such changes could be ameliorated by NGF treatment. Although previous knowledge of NGF is limited to the survival of cholinergic neurons in the CNS, it is assumed that other mechanisms must be operating in the hippocampus, for example, postsynaptic modification at dendrites or aberrant expression of NGF receptors possibly at the initial excitation period by glutamate. Furthermore, because previous work has shown that inhibition of protein synthesis reduces the occurrence of DND, a program leading to cell death might also be operating via de novo synthesis of certain protein(s), collectively termed “killer protein,” because of a lack of NGF.