Abstract
It was known in the 1950s that hepatic microsomal glucose-6-phosphatase plays an important role in the regulation of blood glucose levels. All attempts since then to purify a single polypeptide with glucose-6-phosphatase activity have failed. Until recently, virtually nothing was known about the molecular basis of glucose-6-phosphatase or its regulation. Recent studies of the type 1 glycogen storage diseases, which are human genetic deficiencies that result in impaired glucose-6-phosphatase activity, have greatly increased our understanding of glucose-6-phosphatase. Glucose-6-phosphatase has been shown to comprise at least five different polypeptides, the catalytic subunit of glucose-6-phosphatase with its active site situated in the lumen of the endoplasmic reticulum; a regulatory Ca2+ binding protein; and three transport proteins, T1; T2, and T3, which respectively allow glucose-6-phosphate, phosphate, and glucose to cross the endoplasmic reticulum membrane. Purified glucose-6-phosphatase proteins, immunospecific antibodies, and improved assay techniques have led to the diagnosis of a variety of new type 1 glycogen storage diseases. Recent studies of the type 1 glycogen storage diseases have led to a much greater understanding of the role and regulation of each of the glucose-6-phosphatase proteins.— Burchell, A. Molecular pathology of glucose-6-phosphatase. FASEB J. 4: 2978-2988; 1990.