This study was carried out to compare the cerebral and systemic circulatory effect of halothane and isoflurane. Six mongrel dogs were anesthetized with 1.3 minimal alveolar concentration (MAC) (1%) halothane and were compared with six mongrel dogs anesthetized with 1.3 MAC (1.5%) isoflurane. Likewise, 6 dogs anesthetized with 1.7 MAC (1.3%) halothane were compared with 6 dogs anesthetized with 1.7 MAC (2%) isoflurane. Blood flow (using the radioactive microsphere technique) and cardiovascular measurements were obtained 2 hours after the induction of anesthesia and were repeated 5 more times at hourly intervals. The heart rate was similar in all groups of dogs, except that it was significantly lower with 1.7 MAC halothane. The mean arterial pressure was statistically higher with isoflurane at both concentrations than with halothane. The cardiac index was similar in all groups, except with 1.7 MAC isoflurane, when it was higher. At the early measurements, total cerebral blood flow (CBF) was above "normal" levels in all groups. At 1.3 MAC, the total CBF tended to be lower with isoflurane, but did not reach statistically significant levels. Blood flow decreased over time in all groups. The cerebral vascular resistance (CVR) mirrored the changes in blood flow, showing no difference between agents at 1.7 MAC, but the CVR with isoflurane was significantly higher at 1.3 MAC than it was with halothane. Regional cerebral blood flow showed marked differences. Regional flow to the hemispheres and the cortical gray matter showed that isoflurane tended to produce lower blood flow, particularly at the 1.3 MAC concentration. The reverse was true in the posterior fossa structures, with the brain stem and cerebellum showing higher blood flows with isoflurane, particularly at 1.7 MAC. Isoflurane may have several advantages over halothane for neurosurgical procedures.